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Note 

Growth of Equilibrium Clusters of Lennard-Jones Molecules 

1. INTRODUCTION 

The study of materials at the atomic level by computer simulation has received 
considerable attention since the first attempts at solving the classical N-body 
problem numerically were undertaken at Los Alamos by Metropolis et al. [ 1). 
Such studies become necessary when continuun theories, while adequate to describe 
macroscopic systems, are incapable of accounting for the mechanics of small 
iv-particle systems. A necessary prerequisite to the study of the dynamics of such 
systems is a thorough knowledge of their statics. 

The purpose of this paper is to describe a method for determining minimum 
energy configurations that are characteristic of the Lennard-Jones 6-12 potentional 
function. Little attempt will be made to describe the geometries of the resulting 
clusters. For an exhaustive description of some of the resulting equilibrium con- 
figurations for less than 50 atoms the reader is referred to the landmark papers of 
Hoare and Pal [2, 71. Due to the relatively large number of isomers that exist for 
clusters of more than about 20 atoms and to their high degree of asymmetry, a 
detailed description of their geometries would not be truly useful. The characteristic 
that will be used to describe these clusters is the potential energy. 

For even a relatively small number of atoms the potential energy is an extremely 
complicated function of the position coordinates. Since the methods of calculus are, 
in a practical sense, useless in determining all possible equilibrium configurations 
for more than two atoms some other method must be implemented in order to 
determine whether a given minimum is in fact local or absolute in character. For 
three atoms a combinatorial method may be used to easily enumerate all possible 
stationary values of the potential function and thus determine the absolute 
minimum energy configuration (atoms at the vertices of an equilateral triangle). But 
this method of proof soon becomes unwieldy for as few as four atoms, and unless 
some other method can be employed, it is unlikely that a given energy minimum 
can in fact be proven to be absolute. 

One must therefore rely on some form of intuition in developing a procedure that 
can be expected to yield minimum energy configurations. In this investigation the 
absolute minimum energy configuration for three atoms was used as a starting con- 
figuration. Molecules were generated by adding a single atom to the previously 
static N-cluster at an energetically favorable site (described below) and then cooling 
the resulting (N+ I)-cluster to zero degrees Kelvin. This is the same type of 
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approach that was used by Hoare and Pal but the manner in which the energeti- 
cally favorable sites were chosen is much different. 

The addition of an atom to a static N-cluster proceeds in the following manner: 
an atom is chosen (atom #n) and the distances between n and all of the other 
atoms are calculated. A bubblesort technique is used to sort these distances in order 
of increasing size. The k and j nearest neighbors are then determined. Two lines are 
then calculated: one joins n to the point midway between j and k, and the other 
joins j to the point midway between k and n. The point of intersection of these two 
lines is then calculated. Two possible tetrahedral sites lie along the line passing 
through this point normal to the plane formed by n, j, and k. The distance from this 
plane to each of the proposed sites is set at 0.85 distance units-slightly greather 
than the distance an atom would lie above the plane formed by the other three in 
a true Lennard-Jones tetrahedron. The distances between one of the proposed sites 
and the atoms are calculated and if these distances all exeed a value of 1.0 distance 
units then the site is not rejected. The kinetic energy of the system is then calculated 
after one iteration and if the KE exceeds 1.0 energy units then the site is labeled 
unacceptable and the other site is considered. A value of 1.0 is used because it was 
found that if the kinetic energy exeeded this value after only one iteration, the 
resulting cluster would not approach equilibrium quickly enough, if at all. If the 
second site fails both tests, then another atom (n + 1) is chosen. The process is 
repeated until an acceptable site is located. 

After the position coordinates of the new atom have been determined, the result- 
ing cluster must be quenched. A variety of methods exist for cooling N-particle 
systems including, among others, conjugate gradient techniques [3], individual 
quenching [4], and simultaneous quenching [S]. These techniques all begin by 
assuming that the N-cluster under consideration is sufficiently close to equilibrium, 
and then continuously force it closer to equilibrium. This forcing is accomplished 
in simultaneous quenching by instantaneously setting the velocity of each particle 
equal to zero when the cluster passes through a local maximum in its kinetic 
energy. In individual quenching, the kinetic energy of each particle is monitored 
separately. The conjugate gradient technique consists of a search through the multi- 
dimensional space of atomic position coordinates in directions mutually conjugate, 
with respect to the matrix of second mixed partial derivatives of the potential func- 
tion, to previously searched directions. In this investigation the simultaneous 
quenching technigue was used due to its ease of implementation. 

2. ALGORITHM DEVELOPMENT 

In order to accurately predict the behavior of an N-particle system, the equations 
of motion must be integrated. This is most easily accomplished numerically by 
choosing a time scale that is sufficiently small so that the acceleration a given 
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particle experiences over this period is approximately constant. If this time step is 
denoted by h and the position vector of particlej at time t is denoted by r,(f), then 

r,(t + h) = Yj(l) + Uj(f) . h + 0.5 . u,(t). h2, (1) 

where vj(t) and uj(t) are the velocity and acceleration, respectively, of particle j at 
time t. If the substitution 

u,(t)= [rj(t+h)-rj(t-h)]/(2.h) (2) 

is made, then the Verlet algorithm [6] 

rj(t+h)=2.rj(t)-rj(t--h)+uj(t).h2 (3) 

is obtained. The acceleration is calculated from Newton’s second law, 

aj(t)=Fj(t)/mj= 1 (-dV(r,)/drv).e, 
C Ii mj, 

where mj is the mass of particle j, rii is the scalar distance between particles i and 
j, and eti is a unit vector pointing from i to j. The potential function used was a 
scaled, non-dimensionalized Lennard-Jones type: 

V(rg)= r,i” - 2r,F6. (5) 

Thus, 

aj(t)= 

[ 
1 (12.rZ;13- 12.r,i7).eli Ii mj. 

A brief description of the algorithm is given below. Readers wishing to examine 
the results without detailed study of the algorithm may turn directly to the results 
given in the following section. 

The first cluster is generated in a subroutine named STARTS, and an atom is 
added to the previously static N-cluster by a subroutine named SORTER. The 
equations of motion are then integrated and simultaneous quenching is implemen- 
ted until the KE of the cluster falls below 10e8 energy units. The number of atoms 
in the cluster and the corresponding potential energy at equilibrium are then writ- 
ten. An atom is added to the static N + 1 cluster and the entire process is repeated 
until the cluster of maximum size has been generated. 

3. RESULTS AND DISCUSSION 

The results for values of N ranging from 3 to 46 appear in Table I. Values 
obtained by Hoare and Pal [Z, 71 appear in the right-hand columns for com- 
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TABLE I 

The Potential Energies of Equilibrium Clusters 

of Lennard-Jones Molecules Generated by the 

Present Algorithm Are Compared with Energies 
Generated by the Pal-Hoare Procedure 

Reardon Algorithm Hoare-Pal Procedure 

N "Algorithm V Maximum "Minimum 

-3.000 3 
4 

5 

6 
7 

8 

9 

10 
11 

12 

13 
14 

15 
16 
17 

18 

19 

20 
21 

22 

23 

24 

25 

26 
27 

28 

29 

30 
31 

32 
33 

34 
35 

36 
37 

38 

39 

40 
41 

42 

43 
44 

45 

-6.000 
-9.104 

-12.303 

-15.593 

-19.821 
-24.113 

-26.423 

-32.766 

-37.968 
-44.327 

-47.845 

-52.323 
-56.816 

-61.307 

-66.531 

-72.660 
-77.177 

-81.651 

-88.810 

-92.844 

-96.504 

-101.878 

-106.941 
-112.874 

-116.653 

-122.535 

-127.623 
-133.294 

-137.870 
-142.914 

-148.603 
-153.106 

-158.053 
-163.760 

-168.716 

-174.044 

-178.768 

-182.312 

-188.335 

-194.971 
-200.444 

-3.000 

-6.000 
-9.104 

-12.303 

-15.593 
-18.976 

-23.172 

-26.737 
-30.721 

-35.215 
-37.840 

-41.879 
-49.664 

-54.165 

-58.668 

-63.897 

-69.330 
-73.878 

-80.147 
-85.420 

-90.560 

-94.997 

-100.262 
-105.128 

-110.416 

-115.644 

-120.300 

-125.670 
-131.008 

-136.411 
-142.440 

-148.435 

-156.732 
-163.763 

-169.431 
-174.230 

-179.352 

-104.435 

-189.256 

-194.472 
-199.355 

-204.649 

-3.006 

-6.000 
-9.104 

-12.712 

-16.505 

-19.622 
-24.113 

-28.420 
-32.765 

-37.967 
-44.327 

-47.845 

-52.322 

-56.815 

-81.307 

-66.531 

-72.659 
-77.177 

-81.685 

-86.148 

-90.647 

-96.514 

-102.371 
-108.313 

-112.823 

-117.775 

-123.585 

-128.180 

-133.102 
-138.820 
-143.815 

-149.005 
-154.085 

-158.796 
-164.577 

-169.593 
-174.956 

-179.617 

-184.895 

-190.487 

-195.574 
-200.972 

-206.177 -205.769 

t?6 711.943 210.581 211.172 

Now Units are non-dimensional and N 
signities the number of atoms in the cluster. 
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parison. The absolute minimum energies found by these authors among the four 
different growth schemes used (dodecahedral, fee, pentagonal, and tetrahedral) are 
listed under the column labeled V ~l”llIllUll~ while the highest energies obtained are 
listed under V m&imum~ It should be noted that although one of the growth schemes 
used by Hoare and Pal is labeled tetrahedral, it is not the same procedure that was 
implemented in this investigation. 

The values obtained for the potential energies of the N-clusters fall well within 
the limits obtained by Hoare and Pal for the majority of the clusters examined. 

TABLE II 

The Potential Energies of Equilibrium Clusters of 
Lennard-Jones Molecules Generated by the Current 

Algorithm Are Presented 

N "Algor4hm N V Algorithm 

47 -215.833 

48 -221.823 

49 -228211 

50 -233.094 

51 -238.647 

52 -243.431 

53 -249.550 

54 -255.714 

55 -259.921 

56 -265.518 

57 -271.622 

58 -276.576 

59 -280.334 

60 -288.405 

61 -293.439 

62 -302.249 

63 -308.474 

64 -313.380 

65 -318.144 

66 -323.552 

67 -329.644 

68 -337.068 

69 -342.170 

70 -349737 

71 -355.464 

72 -363.916 

73 -368.976 

74 -373.998 

75 -379.397 

76 -384.394 

77 -388.317 

76 -395.853 

79 -399.782 

80 

81 

62 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

98 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

-406.559 

-413.067 

-420.483 

-424.386 

-430.685 

-436.224 

-440.774 

-446.477 

-452.770 

-457.738 

-469.460 

-475.603 

-480.526 

-489.576 

-497.641 

-501.755 

-508.380 

-512.212 

-521.283 

-527.788 

-533.069 

-539.422 

-546.315 

-552.119 

-558.269 

-561.887 

-568.166 

-573.341 

.581.293 

-587.326 

-592.290 

-596.908 

-603.555 

Nore. Units are non-dimensional and N signities the 
number of atoms in the cluster. 
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There is an apparent transition, however, between the tetrahedral and the pen- 
tagonal growth schemes. For N6 7 the molecules follow the tetrahedral growth 
scheme, but for N= 8 the arrangement jumps to the minimum energy configuration 
found for pentagonal growth. For 8 < N 6 20 the clusters follow the pentagonal 
growth scheme. For N> 20 the clusters assume the forms of isomers whose energies 
lie in the neighborhood of the above-mentioned growth schemes. It is interesting to 
note that for N = 23 the cluster generated by the current algorithm has an energy 
more than two units lower than the minimum energy cluster found by Hoare and 
Pal. For N = 66 the difference is even more pronounced: ~~/algorithm = -323.552, 
while VpaleHoare= -308.372. 

Hoare and Pal seem to use growth schemes that minimize the energy of a new 
atom by carefully placing it into the growing arrangement. The present method, 
which is less complicated, consistently generates clusters comparable in energy to 
the lowest energy configurations found by these authors. In some cases, as has been 
shown, the clusters generated are even lower in energy. Table II lists potential 
energies for 47 Q N < 112. A comparison of energies for each cluster where N > 46 
is not possible due to a lack of data presented by Hoare and Pal. 

The current algorithm required approximately 26 h of total run time on an IBM 
PC/AT enhanced with a DSI-780+/4 board running SVS FORTRAN at 
0.2 Mflops to generate the clusters in Tables I and II. This algorithm is well suited 
for developing starting configurations for molecular dynamics simulations where 
low energy clusters are needed. Examples include the observation of phase transfor- 
mations in Lennard-Jones molecules and diffusion in clusters at low temperature. 
Implementation of the code is neither complicated nor overburdening, since many 
of the subroutines that are called are an integral part of any such simulation. 
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